Articular cartilage tensile integrity: modulation by matrix depletion is maturation-dependent.

نویسندگان

  • Anna Asanbaeva
  • Johnny Tam
  • Barbara L Schumacher
  • Stephen M Klisch
  • Koichi Masuda
  • Robert L Sah
چکیده

Articular cartilage function depends on the molecular composition and structure of its extracellular matrix (ECM). The collagen network (CN) provides cartilage with tensile integrity, but must also remodel during growth. Such remodeling may depend on matrix molecules interacting with the CN to modulate the tensile behavior of cartilage. The objective of this study was to determine the effects of increasingly selective matrix depletion on tensile properties of immature and mature articular cartilage, and thereby establish a framework for identifying molecules involved in CN remodeling. Depletion of immature cartilage with guanidine, chondroitinase ABC, chondroitinase AC, and Streptomyces hyaluronidase markedly increased tensile integrity, while the integrity of mature cartilage remained unaltered after depletion with guanidine. The enhanced tensile integrity after matrix depletion suggests that certain ECM components of immature matrix serve to inhibit CN interactions and may act as modulators of physiological alterations of cartilage geometry and tensile properties during growth/maturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular Na(+) and Ca(2+) modulation increases the tensile properties of developing engineered articular cartilage.

OBJECTIVE Significant collagen content and tensile properties are difficult to achieve in tissue-engineered articular cartilage. The aim of this study was to investigate whether treating developing tissue-engineered cartilage constructs with modulators of intracellular Na(+) or Ca(2+) could increase collagen concentration and construct tensile properties. METHODS Inhibitors of Na(+) ion trans...

متن کامل

Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with beta-aminopropionitrile.

OBJECTIVE To examine the effect of beta-aminopropionitrile (BAPN), an inhibitor of lysyl oxidase, on growth and remodeling of immature articular cartilage in vitro. DESIGN Immature bovine articular cartilage explants from the superficial and middle layers were cultured for 13 days in serum-containing medium with or without BAPN. Variations in tissue size, accumulation of proteoglycan and coll...

متن کامل

Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage.

OBJECTIVE The focus of tissue engineering of neocartilage has traditionally been on enhancing extracellular matrix and thus biomechanical properties. Emphasis has been placed on the enhancement of collagen type and quantity, and, concomitantly, tensile properties. The objective of this study was to improve crosslinking of the collagen network by testing the hypothesis that hypoxia could promote...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Evaluation of subchondral bone mineral density associated with articular cartilage structure and integrity in healthy equine joints with different functional demands.

OBJECTIVE To determine and correlate subchondral bone mineral density and overlying cartilage structure and tensile integrity in mature healthy equine stifle (low magnitude loading) and metacarpophalangeal (high magnitude loading) joints. ANIMALS 8 healthy horses, 2 to 3 years of age. PROCEDURE Osteochondral samples were acquired from the medial femoral condyle (FC) and medial trochlear rid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 474 1  شماره 

صفحات  -

تاریخ انتشار 2008